Aromatic Nucleophilic Substitution. 20.' Kinetics of the Reactions of 2-(Acety1amino)ethyl 2,6-Dinitrophenyl Ether and N-Acetyl-N-(2-hydroxyethyl)-2,6-dinitroaniline with Potassium Methoxide in Me₂SO-Methanol

Shizen Sekiguchi,* Motohiko Hirai, and Noboru Tomoto[†]

Department of Synthetic Chemistry, Gunma University, Kiryu, Gunma **376,** *Japan, and, Department of Industrial Chemistry, Miyazaki University, 1-1 -1 Kirishima, Miyazaki, Miyazaki* **880,** *Japan*

Received September 13, 1983

The reactions of 2-(acety1amino)ethyl 2,6-dinitrophenyl ether (le) and **N-acetyl-N-(2-hydroxyethyl)-2,6-di**nitroaniline (6e) with potassium methoxide were carried out in Me2SO-methanol (6040, *v/u).* In both reactions the same spiro anionic *u* complex **3e** was formed, although the two rates of formation of **3e** were different. On the other hand, the rates of decomposition of **3e** were the same in both reactions within experimental error, both indicating that considerable amounts of le and **6e** are initially converted **into 3e,** which then undergoes unimolecular decomposition.

Although the Meisenheimer complexes in aromatic nucleophilic substitution reactions have attracted much attention, $2-4$ there have been a few reports describing detailed kinetics of the base-catalyzed Smiles rearrangements (aromatic intramolecular nucleophilic substitution) where such complexes intervene. $5,6$

We have reported previously that in the Smiles rearrangement of $1a-d$ (Scheme I) the process $1 \rightleftarrows 2 \rightleftarrows 3$ is very fast whereas the process $3 \rightleftarrows 4 \rightarrow 5$ is relatively s $\overline{\text{low}}$.⁷⁻¹⁰

From the kinetics of the Smiles rearrangement of **la-d,** the pseudo-first-order rate constant for the rearrangement (k_{obsd}) could be expressed as a function of K_2 , K_3 , and K_4 , of which K_2 could be determined by a stopped-flow method. Accordingly, more detailed information of K_3 , K_4 , and K_5 is necessary for further characterization of the reaction. Although the kinetics of the reaction of **6a-d** with a base would contribute to the elucidation of those stages, we were not able to synthesize **6a-d.** More recently **N-acetyl-N-(2-hydroxyethyl)-2,6-dinitroaniline (6e)** has been synthesized. 11,12

The UV-vis and NMR time-dependent spectra of the potassium tert-butoxide catalyzed rearrangements of **le** and **6e** indicated the reaction path shown in Scheme **I."** This paper reports the kinetics of the reactions of **le** and **6e** with CH_3OK in a Me₂SO-CH₃OH mixture (60:40, v/v).

f Miyazaki University.

Results

Stage I. Rearrangement of 2-(Acety1amino)ethyl 2,6-Dinitrophenyl Ether (le). As the spectral evidence shows,¹¹ the reaction of **le** or **6e** is divided into two stages. shows,¹¹ the reaction of 1e or 6e is divided into two stages.
With $1e,$ ¹¹ the process $1e \rightleftharpoons 2e \rightleftharpoons 3e$ (stage I) is very fast, whereas the process $3e \rightleftharpoons 4e \rightarrow 5e$ (stage II) is relatively whereas the process $3e \rightleftarrows 4e \rightarrow 5e$ (stage II) is relatively
slow. With 6e the process $3e \rightarrows 4e \rightarrows 3e$ (stage II) is very
fast, whereas the process $3e \rightarrows 4e \rightarrow 5$ (stage II) is rela-
timely along Thus the stage Logu tively slow. Thus the stage **I** equilibrium is established rapidly, lying considerably to the right with higher [CH₃OK], and the decomposition of 3e is relatively slow.¹¹

Let us rewrite Scheme **I as** Scheme **11** in a fashion con-

Scheme I1

$$
1e + CH_3O^- \xrightarrow{K_1} 2e + CH_3OH \tag{1}
$$

$$
2e \xrightarrow{k_3, K_3} 3e \tag{2}
$$

$$
3e \xrightarrow[k_3]{k_3} 4e \xrightarrow{k_4} 5e \qquad (3)
$$

venient for quantitative discussion of **le.** The constant K_1 can be expressed as $K_A K_1$ ' (where K_A is the dissociation constants of $1e$, and K_1 is the self-association constant of methanol). In the kinetic measurement of the stage **^I** reaction (eq **1** and **2),** the stage **11** reaction can be neglected.

- **(1) Part 19;** Sekiguchi, S.; Aizawa, T.; Tomoto, N. *J. Org. Chem.* **1984, 49, 93.**
-
- **(2)** Crampton, C. R. *Adv. Phys. Org. Chem.* **1969,** *7,* **211. (3)** Shine, H. J. 'Aromatic Rearrangements"; Elsevier: New York, **1967;** p **307.**
	-
- **(4)** Bernasconi, C. **F. Acc.** *Chem. Res.* **1978, 11, 147. (5)** (a) Warren, **L. A.;** Smiles, S. *J. Chem.* SOC. **1930,950.** (b) Evans, W. J.; Smiles, S. *Zbid* **1935,181.** (c) Truce, W. E.; Kreider, E. M.; Brand, W. W. *Org. React. (N.Y.)* **1970,18, 99.**
- **(6)** Bernasconi, C. **F.;** Gehriger, C. L.; de Rossi, R. H. *J. Am. Chem.* **SOC. 1976, 98, 8451.**
	-

(7) Sekiguchi, **S.;** Okada, K. *J. Org. Chem.* **1975,40, 2792.** *(8)* Okada, K.; Matsui, K.; Sekiguchi, S. *Bull. Chem.* **SOC.** *Jpn.* **1978, 51, 2601.**

(9) Okada, K.; Sekiguchi, S. *J.* Org. *Chem.* **1978,** *43,* **441.** For the OH⁻catalyzed rearrangement of 1b at 25 °C, k_2 is 1.18 × 10² s⁻¹, k_{-2} is 1.10 × 10 s⁻¹, and K_1 is 1.31 × 10² M⁻¹; for the OH⁻catalyzed rearrangement of $1d$, k_2 is 5.99×10^2 s⁻¹, k_{-2} is 1.20×10 s⁻¹, and K_1 is 9.33 \times **10** M^{-1} .

(IO) Sekiguchi, S.; Ohtauka, I., **Okada,** K. *J. Org. Chem.* **1979,44,2556. (11) Sekiguchi, S.;** Hmhino, *0.;* Hirai, M.; Okada, K.; Tomoto, N. *Bull. Chem. SOC. Jpn.* **1983,56, 2173.**

(12) Sekiguchi, S.; Hirai, M.; Tomoto, N. Bull. Chem. Soc. Jpn., in
press. The relationship between k_v^N and $[(CH_3)_2CHONa]$ was found to
be curvilinear in the reaction of 6e with $(CH_3)_2CHONa$ in the Me₂SO-
2-propanol (20: is 2.3×10^3 , and $K_3^{-1}K_5^{-1}$ is 7.1×10^{-3} M⁻¹, respectively.

0022-3263/84/1949-2378\$01.50/0 *0* **1984** American Chemical Society

Table I. Temperature Dependence of Rate and Equilibrium Constants for the Formation of Spiro Anionic σ Complex 3e from 2-(Acetylamino)ethyl 2,6-Dinitrophenyl Ether (1e) or N-Acetyl-N-(2-hydroxyethyl)-2,6-dinitroaniline (6e) and Potassium Methoxide in Me₂SO-CH₃OH (60:40, v/v)

temp, $^{\circ}$ C	k_2K_1 , M ⁻¹ s ⁻¹	k_{-2} , s ⁻¹	K_1K_2 , M ⁻¹	$k_{-3}K_5^{-1}$, M ⁻¹ s ⁻¹	k_3 , s ⁻¹	$(K_5K_3)^{-1}$, M ⁻¹
15	a	a	a	418 ± 14	2.58 ± 0.25	164 ± 21
20	8.53 ± 0.31		a	$655 \bullet 51$	3.97 ± 0.94	178 ± 56
30	26.6 ± 0.7	$(0.118 \pm 0.0021)^d$	232 ± 36^c	1480 ± 120	7.45 ± 2.09	221 ± 78 $(339 \pm 89)^c$
40	62.7 ± 3.5	0.17 ± 0.11 $(0.239 \triangle 0.036)^d$	246 ± 45 ^c	4060 ± 260	10.7 ± 2.8	415 ± 133
50	140 ± 6	0.14 ± 0.09	\boldsymbol{a}	a	α	α

^a Not measured. ^b Too small to be evaluated from the kinetics. C Determined by a spectrophotometric method (see Experimental Section). ^dCalculated from $k_{-2} = (k_2 K_1)/K_1 K_2$.

Figure 1. Relationship between k_y ^O and [CH₃OK] in the reaction of 2-(acetylamino)ethyl 2,6-dinitrophenyl ether (1e) with CH₃OK in Me₂SO-CH₃OH (60:40, v/v): [1e]₀ = 3.67 × 10⁻⁵ M; μ = 0.05 M (KClO₄).

Accordingly, the pseudo-first-order rate constant (k_y^0) for formation of 3e is expressed in eq 4.

$$
k_{\psi}^{O} = k_{-2} + \frac{k_{2}K_{1}[CH_{3}OK]}{1 + K_{1}[CH_{3}OK]}
$$
 (4)

If $K_1[\text{CH}_3\text{OK}] \ll 1$, eq 5 is derived. The dependence of k_{ν} ^O on [CH₃OK] is compatible with eq 5 (Figure 1). As

$$
k_{\psi}{}^{0} = k_{-2} + k_{2} K_{1}[\text{CH}_{3}\text{OK}] \tag{5}
$$

a result, the k_{-2} and k_2K_1 values can be estimated from the intercept and slope in the linear plots, respectively (Table I).

Rearrangement of N-Acetyl-N-(2-hydroxyethyl)-2,6-dinitroaniline (6e). In the reaction of 6e with $CH₃OK$ one can rewrite Scheme I as Scheme III. The constant

Scheme III

$$
6e + CH_3O^- \frac{k_{-6}}{k_{5} K_5} 4e + CH_3OH
$$
 (6)

$$
4e \frac{k_3}{k_3, K_3} 3e \tag{7}
$$

$$
3e \xrightarrow[k_{3}]{k_{3}} 4e \xrightarrow{k_{4}} 5e
$$
 (8)

 K_5 can be expressed as K_W/K_A (where K_A is the constant of 6e and K_W is the ionic product of methanol). In the kinetic measurement of the stage I reaction (eq 6 and 7) the stage II reaction can be neglected. The pseudo-first-

Figure 2. Relationship between k_v^N and [CH₃OK] in the reaction of *N*-acetyl-*N*-(2-hydroxyethyl)-2,6-dinitroaniline (6e) with CH₃OK in Me₂SO-CH₃OH (60:40, v/v): [6e]₀ = 3.71 × 10⁻⁵ M; $\mu = 0.05$ M (KClO₄).

order rate constant (k_{μ}^N) for formation of 3e, is therefore expressed in eq 9 (note the relationships between the directions of reactions and rate or equilibrium constants).

$$
k_{\psi}^{N} = k_{3} + \frac{\frac{k_{-3}}{K_{5}}[CH_{3}OK]}{1 + \frac{1}{K_{5}}[CH_{3}OK]}
$$
(9)

Accordingly the plot of k_{ψ} ^N against [CH₃OK] should
show a curvilinear dependence on [CH₃OK], indicating a fixed value at higher [CH₃OK]. If $[\text{CH}_3\text{OK}]/K_5 \ll 1$, however, a linear dependence should be obtained (eq 10).

$$
k_{\psi}^{\ \ N} = k_3 + \frac{k_{-3}}{K_5}[\text{CH}_3\text{OK}] \tag{10}
$$

Figure 2 shows the linear dependence of k_{ψ}^N on [CH₃OK], giving the k_3 and k_{-3}/K_5 values from the intercept and slope in the linear plots.

In Table I, the K_1K_2 values were obtained by a spectrophotometric method, since the errors in k_{-2} values obtained by kinetic measurement were so large that exact K_1K_2 values were not obtained (refer to the k_{-2} values at 40 and 50 °C). The large K_1K_2 and $(K_5K_3)^{-1}$ values show
that the equilibria for $1e + CH_3O^- \rightleftharpoons 3e + CH_3OH$ and 6e + $CH_3O^ \rightleftharpoons$ 3e + CH_3OH lie considerably to the right at higher $[CH₃OK]$.

Stage II. Rearrangement of 2-(Acetylamino)ethyl 2,6-Dinitrophenyl Ether (1e). As the spectral results¹¹ and the stage I kinetics show, in the treatment of the kinetics of the stage II reaction the stage I reaction can

Figure 3. Relationships between K^0_{obed} and k^N_{obed} and $[CH_3OK]$ at 30 °C [μ . $= 0.05$ M (KClO₄)]: $\left(\Delta\right)$ *k*^O_{obsd}; (O) *k*^N_{obsd}.

be dealt with as a fast mobile equilibrium. Accordingly, the following expression (eq 11) is obtained for the rate

$$
k^{\circ}{}_{\text{obsd}} = \frac{k_4 K_1 K_2 K_3 \text{[CH}_3\text{OK]}}{1 + K_1 K_2 K_3 K_5 + (K_1 + K_1 K_2 + K_1 K_2 K_3) \text{[CH}_3\text{OK]}} \tag{11}
$$

of the stage II reaction in the presence of excess CH₃OK, if the k_4 stage is rate determining and the K_5 and K_3 stages are mobile equilibria.

 k^0 _{obsd} is the pseudo-first-order rate constant for the rearrangement of **le.**

Although the relationship between k^0 _{obsd} and [CH₃OK] is curvilinear, the $k^{\text{O}}_{\text{obsd}}$ would asymptotically approach a fixed value at higher [CH30K] (eq **12).** Furthermore,

$$
k^{\rm O}{}_{\rm obsd} = \frac{k_4 K_2 K_3}{1 + K_2 + K_2 K_3} \tag{12}
$$

if $(K_1 + K_1K_2 + K_1K_2K_3)[CH_3OK] \gg 1 + K_1K_2K_3K_5$, eq 12 would hold, and k^0 _{obsd} would be independent of $[CH₃OK]$. This is the case with the results of preliminary work on the reaction of **le** with sodium isopropoxide in the Me₂SO-2-propanol mixture (20:80, v/v).¹²

Moreover, taking the reciprocals of both sides of eq 11, one can derive the following expression (eq 13). As a

$$
\frac{1}{k_{\text{obsod}}^0} = \frac{1 + K_1 K_2 K_3 K_5}{k_4 K_1 K_2 K_3 \text{[CH}_3\text{OK]}} + \frac{(1 + K_2 + K_2 K_3)}{k_4 K_2 K_3} \tag{13}
$$

result, the plot of $1/k⁰_{obsd}$ vs. $1/[\text{CH}_3\text{OK}]$ would be linear (Figure 3). The results in Figure 3 are compatible with eq 11 and 13.

Rearrangement of N-Acetyl-N-(2-hydroxyethyl)- 2,6-dinitroaniline (6e). In the rearrangement of **6e,** the process $6e \rightleftarrows 4e \rightleftarrows 3e$ (Scheme III, eq 6 and 7) is very fast, and the process $3e \rightleftharpoons 4e \rightarrow 5e$ is relatively slow.¹¹ Therefore, in the treatment of the kinetics of the stage I1 reaction for **6e** the process **6e** \rightleftharpoons **4e** \rightleftharpoons **3e** can be dealt with **as** a fast mobile equilibrium. Accordingly, the rate of the stage II reaction in the presence of excess $CH₃OK$ can be expressed by eq 14, provided the k_4 stage is rate deter-

$$
k^{N}_{\text{obsd}} = \frac{\frac{k_4}{K_5}[\text{CH}_3\text{OK}]}{1 + \left(\frac{1}{K_5}\right)\left(1 + \frac{1}{K_3}\right)[\text{CH}_3\text{OK}]}
$$
(14)

mining (k_{obsd}) is the pseudo-first-order rate constant).

Table II. Pseudo-First-Order Rate Constants (k_{obs}) **for the Rearrangement of N-Acetyl-N-(2-hydroxyethyl)-2,6-dinitroaniline (6e)**

with Potassium Methoxide in a Me₂SO-CH₃OH Mixture $(60:40, v/v)^a$

^{*a*} [6e]₀ = 1.32 × 10⁻⁵ M; μ = 0.05 M (KClO₄); the decrease in absorption at 580 nm was measured on a conventional spectrophotometer.

Equation 14 indicates that which increasing $[CH₃OK]$, *kNoW* would approach a fixed value (eq 14) asymptotically. Under the condition $(1/K_5)[1 + (1/K_3)][CH_3OK] \gg 1$, eq 15 is obtained, indicating that k_{obsd}^N is independent of reas that which increasin

the fixed value (eq 14) asy
 $(1/K_5)[1 + (1/K_3)][CH_3t_3]$

cating that k^N_{obsd} is independent
 $k^N_{\text{obsd}} = \frac{k_4 K_3}{1 + K_3}$

he case with the reaction

$$
k^{\rm N}{}_{\rm obsd} = \frac{k_4 K_3}{1 + K_3} \tag{15}
$$

[CH30K]. This is the case with the reaction of **6e** with sodium isopropoxide in the Me₂SO-2-propanol mixture $(20:80, v/v).$ ¹² Table II shows the dependence of k^N _{obsd} on $[CH₃OK]$, which is illustrated in Figure 3. Furthermore, by taking the reciprocals of both sides of eq 14, one can derive eq 16, indicating the linear dependence of $1/k^N_{\text{obsd}}$

$$
\frac{1}{k_{\text{obsd}}} = \frac{K_5}{k_4[\text{CH}_3\text{OK}]} + \frac{1 + K_3}{k_4 K_3} \tag{16}
$$

on $1/[\text{CH}_3\text{OK}]$. The results in Figure 3 are compatible with eq 14 and 16. Interestingly, the plots of eq 11 and 14 and plots of eq 13 and 16 coincide with each other within experimental error.

Discussion

Stage I. From K_1K_2 and $(K_2K_3)^{-1}$ (Table I) the equilibria $(1e + CH_3O^- \rightleftharpoons 3e + CH_3OH$ and $6e + CH_3O^- \rightleftharpoons$ **3e** + CH30H) were found to lie considerably toward **3e** (anionic σ complex) at higher $[CH₃OK]$.

Comparison of k_2K_1 with $k_{-3}K_5^{-1}$ clearly shows the difference in nucleophilicity of both amide and alkoxide ions Comparison of k_2K_1 with $k_{-3}K_5^{-1}$ clearly shows the difference in nucleophilicity of both amide and alkoxide ions (Table I): as the acidities of amides (RCONH- \rightarrow RCON--(Table I): as the acidities of amides (RCONH- \rightarrow RCON⁻-
+ H⁺) are generally higher than those of alcohols (ROH
 \rightarrow RO⁻ + H⁺),^{9,13,14} it can be assumed that $K_1 > K_5^{-1}$.

⁽¹³⁾ Hine, J.; Hine, M. *J. Am. Chem.* **SOC. 1952,** *74,* **5266.**

Table III. Temperature Dependence of $(1 + K_2 +$ $K_3K_3/k_4K_3K_1$ and $(1 + K_3)/k_4K_3$

	temp, ۰C	$(1 + K_2 + K_2K_3)$ $k_4K_2K_3$, s	$(1 + K_3)$ k_4K_4 , s				
	30	2350 ± 90	2320 ± 190				
	40	$800 \triangle 50$	$820 \bullet 70$				
	50	340 ± 30	340 ± 20				

Accordingly it follows that $k_{-3} \gg k_2$ because $k_{-3}K_5^{-1} \gg$ k_2K_1 . These results show that the negative charge on the amide nitrogen atom **2e** is delocalized over the acetyl group $[-N-COCH₃ \leftrightarrow -N=C(O^-)CH₃]$, and thus the nucleophilicity of the amide ion is decreased, whereas the negative charge is concentrated on the alkoxy1 oxygen atom **(4e).**

Although the differences in the solvents are taken into account, the k_2K_1 values are fairly low compared with those in the reaction of **le** with sodium isopropoxide in the Me₂SO-2-propanol mixture $(20.80, v/v)^{12}$ which may be attributed to the lower reactivity of methoxide ion (Table 1).

Comparison of k_3 with k_{-2} is very interesting: in Table $I k_3 \gg k_2$ in agreement with the results obtained in aromatic. nucleophilic reactions of alkyl aryl ethers with amines¹⁵ and supporting the experimental fact that no 1e, which should be formed **as** shown in Scheme I, was found in the reaction of **6e** with CH,OK.

Stage II. It is very interesting that the k_{obsd}^0 and k_{obsd}^N vs. [CH,OK] plots or their inversion plots coincide with each other (Figure **3).** These results are considered to

(14) Bowden, K. Chem. *Rev.* **1979, 70,667.**

support Scheme I. From the intercepts in the inversion plots the parameters $(1 + K_2 + K_2K_3)/k_4K_2K_3$ and $(1 +$ K_3 / k_4K_3 can be estimated, which represent the lower limits of the reciprocals of k^0 _{obsd} and k^N _{obsd} (Table III).

From the coincidence of the inversion plots the following relations are derived (eq 17 and 18). In order for eq 17
 $\frac{1 + K_1 K_2 K_3 K_5}{1 + K_1 K_2 K_3 K_4} = \frac{K_5}{17}$

$$
\frac{1 + K_1 K_2 K_3 K_5}{k_4 K_1 K_2 K_3} = \frac{K_5}{k_4}
$$
 (17)

$$
\frac{1 + K_2 + K_2 K_3}{k_4 K_2 K_3} = \frac{1 + K_3}{k_4 K_3} \tag{18}
$$

to be valid, $K_1K_2K_3$ should be much greater than 1. It follows, therefore, that $k_3 \gg ca$. 10^{-2} , because the K_1K_2 values are ca. 10^2 . Therefore, the K_3 value is larger than that in the reaction of *6e* with sodium isopropoxide in the Me₂SO-2-propanol (20:80, v/v),¹² which would be attributable to the kinds of alcohols and compositions of mixed solvents.

As treatment of **la-d** with alkoxides yields the rearranged products 5a-e, it is expected that $K_2 \gg 1$.⁹ Therefore, eq 18 holds.

From Table III the $k_4K_3/(1+K_3)$ values are (4.31 \pm $(0.35) \times 10^{-4}$ (30 °C), $(1.22 \pm 0.10) \times 10^{-3}$ (40 °C), and (2.94) \pm 0.17) \times 10⁻³ (50 °C) s⁻¹. These numbers approximately represent the k_4K_3 value, since K_3 is expected to be much small than **1.12** Therefore, the rate constants of rear-From Table III the $k_4K_3/(1 + K_3)$ values are $(4.31 \pm 0.35) \times 10^{-4} (30 \text{ °C})$, $(1.22 \pm 0.10) \times 10^{-3} (40 \text{ °C})$, and $(2.94 \pm 0.17) \times 10^{-3} (50 \text{ °C}) \text{ s}^{-1}$. These numbers approximately represent the k_4K_3 value, sin decomposition stages of anionic σ complexs and are essentially independent of their formation stages. The smaller K_3 values should contribute to the relatively low rates of rearrangement.

Registry No. le, 70320-89-7; **2e,** 90246-21-2; **3e,** 90269-12-8; 4e, 90246-22-3; 5e, 90246-23-4; **6e,** 87666-43-1.

(2 + **2) and (2** + **4) Cycloadditions of Fluorinated Allenes**

William R. Dolbier, Jr.,* and Conrad R. Burkholder

Department of Chemistry, University of Florida, Gainesville, Florida 3261 1

Received November 3, 1983

Various $(2 + 2)$ and $(2 + 4)$ cycloadditions of difluoroallene and fluoroallene are presented and discussed mechanistically. The results are interpreted **as** reinforcing the hypothesis that distinct, and at times competing, concerted (2 ⁺4) and nonconcerted (2 + 2) mechanisms are involved.

1,1-Difluoroallene (DFA) has been shown¹ to undergo regiospecific $(2 + 4)$ cycloadditions with respect to DFA, with the C_2-C_3 bond being exclusively incorporated into the new ring, while, in contrast, little regioselectivity with respect to the diene component is observed. In comparison to its $(2 + 4)$ behavior, the $(2 + 2)$ cycloadditions of DFA exhibit a lack of regiospecifity with respect to the DFA and increased regioselectivity with respect to the other **(2** + 2) component (Scheme **I).I**

Likewise, fluoroallene (MFA) has been reported to undergo $(2 + 4)$ cycloadditions with similar regiochemical behavior (Scheme II).2

Results and Discussion

(2 + **4) Cycloadditions.** A number of additional cycloaddition reactions of DFA were studied with the aim

⁽¹⁵⁾ Terrier, F. *Chem. Rev.* **1982,** *82,* **77.**

⁽¹⁶⁾ The synthesis of **68-d** were unsuccessful, because they might easily rearrange to protonated 5a-d even if they are formed.

⁽¹⁷⁾ Benesi, H. A.; Hddebrand, J. H. *J. Am.* Chem. SOC. **1949,71,2703.**

These results were interpreted as deriving from the involvement of distinct and, in the case **of** the acyclic dienes, competitive, concerted $(2 + 4)$ and nonconcerted $(2 + 2)$ mechanistic processes. We present, at this time, results from a number of additional $(2 + 4)$ and $(2 + 2)$ cycloadditions of fluorine-substituted allenes, results which we believe provide additional support for the hypothesis of distinct mechanisms for the two modes of reaction.

⁽¹⁾ Dolbier, W. R., Jr.; Piedrahita, C. A.; **Houk,** K. N.; Strosier, R. W.; Gandour, R. W. *Tetrahedron Lett.* **1978, 2231.**

⁽²⁾ Dolbier, W. R., Jr.; Burkholder, C. R. *Tetrahedron Lett.* **1980,21, 785.**